Những câu hỏi liên quan
Bui Cam Lan Bui
Xem chi tiết
Minh Triều
30 tháng 9 2015 lúc 20:52

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dung BĐT cô si cho 2 số không âm ta được:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}.\frac{c}{a}}=2\)

\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}.\frac{c}{b}}=2\)

Suy ra: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\left(\text{ điều phải chứng minh}\right)\)

Bình luận (0)
Đinh Tuấn Việt
30 tháng 9 2015 lúc 20:54

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng tổng hai phân số nghịch đảo lớn hơn hoặc bằng 2 ta có :

\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

=> ĐPCM

Bình luận (0)
Đinh Tuấn Việt
30 tháng 9 2015 lúc 20:55

hu hu làm rồi nhưng ko hiện lên

Bình luận (0)
tnhy
Xem chi tiết
Linh Châu
Xem chi tiết
tthnew
1 tháng 7 2020 lúc 19:55

1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)

Đẳng thức xảy ra khi $a=b=c.$

2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)

Đẳng thức..

3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$

Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.

4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$

Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)

Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$

Đây là điều hiển nhiên.

5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)

6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)

Có thế thôi mà nhỉ:v

Bình luận (0)
minh anh
Xem chi tiết
Nguyễn Nhật Minh
7 tháng 12 2015 lúc 22:41

Bài này có nhiều hơn 3 cách làm

C1)

\(a+b+c\ge3\sqrt[3]{abc}\) (1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}=3\sqrt[3]{\frac{1}{abc}}\) (2)

(1)(2) => đpcm

c2 ) Bunhia

C3)  thế thui ..

 

Bình luận (0)
Văn Thắng Hồ
Xem chi tiết
Thái Thị Kim Cúc
Xem chi tiết
Shin
Xem chi tiết
Le Thi Khanh Huyen
4 tháng 10 2016 lúc 12:58

Ta có :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\)

\(\frac{1}{6}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge\sqrt[6]{\frac{a}{b}.\frac{a}{c}.\frac{b}{a}.\frac{b}{c}.\frac{c}{a}.\frac{c}{b}}\)

\(\Rightarrow\frac{1}{6}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge\sqrt[6]{1}\)

\(\Rightarrow\frac{1}{6}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge1\)

\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge1:\frac{1}{6}=6\)

\(\Rightarrow3+\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge3+6=9\)

~

Bình luận (0)
Le Thi Khanh Huyen
4 tháng 10 2016 lúc 13:01

Còn 1 cách dùng BĐT Cauchy:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left[\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\right]\)

Áp dụng BĐT Cauchy cho \(\frac{a}{b}+\frac{b}{a};\frac{a}{c}+\frac{c}{a};\frac{b}{c}+\frac{c}{b};\)có :

\(\left(\frac{a}{b}+\frac{b}{a}\right)+\ge2\)

\(\left(\frac{b}{c}+\frac{c}{b}\right)\ge2\)

\(\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\)

\(\Rightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge2+2+2=6\)

Tương tự, bạn làm tiếp.

Bình luận (0)
le anh tuyen
23 tháng 4 2017 lúc 15:35

de ma tu lam di ban

Bình luận (0)
Hi nguyễn
Xem chi tiết
Vũ Trọng Nghĩa
29 tháng 7 2016 lúc 1:05

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

Bình luận (0)
Mộc Miên
Xem chi tiết
Thiện Nguyễn
25 tháng 3 2020 lúc 11:07
https://i.imgur.com/bx8s8Hy.jpg
Bình luận (0)
 Khách vãng lai đã xóa
Thiện Nguyễn
25 tháng 3 2020 lúc 11:07
https://i.imgur.com/AISWXxC.jpg
Bình luận (0)
 Khách vãng lai đã xóa